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Abstract  
 

Deficiency of plant available phosphorus (P) is prevailing across the globe. Farming community in Pakistan is also facing the 

issue of poor availability of P due to high soil pH and calcareous nature of soils resulting in lower P-fertilizer use efficiency 

(FUE) of expensive fertilizers. Cow manure and elemental sulfur (S°) were bio-augmented with sulfur oxidizing bacteria 

(SOB) and the resultant solid product was diluted with water to get acidified extract (AE). SOB oxidize S° to SO4
-2

 and 

generate sulfuric acid, having the potential to solubilize insoluble P compounds to simple plant available P (H2PO4
-
 or HPO4

2-

). Maize was grown in pots with recommended dose (82.5 mg kg
-1

) and half (41.25 mg kg
-1

) dose of P by using three types of 

P fertilizers viz., diammonium phosphate (DAP), single superphosphate (SSP) and rock phosphate (RP) with and without 10% 

acidified extract (AE) at the rate of 247 L ha
-1

. The results revealed that combined use of P fertilizers and AE improved 

growth, yield and related traits and P uptake of maize compared to alone application of P fertilizers. Combined application of 

DAP with AE proven to be most significant followed by SSP and RP, each with AE, respectively. DAP and AE improved dry 

shoot biomass, spade value, cob length, grains per cob and P uptake in shoots by 57.45, 12.96, 57.39, 74.56 and 92.42% over 

sole application of DAP, respectively. In conclusion, combined application of DAP and AE was advantageous in improving P 

acquisition and maize productivity. © 2019 Friends Science Publishers 
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Introduction 
 

Global boost in human population requires amplified 

agricultural production and for that, phosphorus (P) 

availability in the soil is crucial (Cordell et al., 2009; 

Gilbert, 2009). It is an essential macronutrient for plant 

growth (Sharma et al., 2011; Satyaprakash et al., 2017) due 

to its involvement in many plant processes such as carbon 

metabolism, photosynthesis, membrane formation (Wu-

Wong et al., 2006) as well as in the transfer and storage of 

energy (Griffith and Ryan, 1999). It is an important part of 

“DNA” and structural component of many phospho-

proteins, co-enzymes and phospholipids (Juneja et al., 2013; 

Yang et al., 2017). Additionally, P has a vital influence on 

root elongation, propagation (Borch et al., 1999) and 

maintenance of root architecture (Williamson et al., 2001), 

seed formation and ordinary crop maturity. Poor P bio-

availability and mobility in soil (Elser et al., 2007; Chen et 

al., 2008) is the prime cause of 30-40% reduction in crop 

yield (Vance et al., 2003). In calcareous soils, main reason 

behind the limited availability of P is calcium carbonate 

concentration which serves as a sink for phosphate 

precipitation (Hopkins and Ellsworth, 2005). Although, total 

soil P contents in Pakistan, are ranging from 163 to 1050 mg 

kg
-1

 that seems to be more than enough (Memon et al., 2011). 

However, only 1.0 mg kg
-1
 is available to plants (Vassilev et 

al., 2001; Solangi et al., 2006) to cope up optimum crop 

production. 

In order to maximize plant growth and yield, external 

source of P fertilizers is required. Unfortunately, the overall 

P fertilizer use efficiency in our country is very low 

(Vassilev and Vassileva, 2003) and only 10–25% of the 

applied fertilizer is taken up by plants (Vance, 2001). The 

rest comes in contact with soil colloids to be converted into 

insoluble form of tri-calcium phosphate (Dobermann et al., 

1998) and becomes unavailable (Gill et al., 2004). Further, 

the price of P fertilizers, such as DAP and nitrophos, is too 

high compared to their efficiency. However, rock phosphate 

is the cheapest source of P which was little used in 

agriculture sector. 

In order to improve the P nutrition for optimum plant 

growth, a wide range of strategies have been adopted in 
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alkaline and calcareous soils (Curtin and Syers, 2001). High 

P fertilizer rates, slow-release fertilizers (Thonar et al., 

2017), acid producing fertilizers, sulfur containing fertilizers 

are used to increase P acquisition efficiency of plants. Apart 

from this, organic amendments (Mitran et al., 2018), 

microbial activity (Novo et al., 2018), SOB (Sattar et 

al., 2017), SOB and phosphate solubilizing bacteria (PSB) 

(Solanki et al., 2018), acidified fertilizers and acid 

producing materials (Pedersen et al., 2017) are also 

promising approaches. These sources can be applied alone 

or in various combinations to improve P availability to 

plants. Among the acid producing materials, S° is found 

effective and economical to enhance P solubility and uptake 

in calcareous soils (Kaplan and Orman, 1998). In soil, SOB 

oxidize S° through biochemical process and produce H2SO4 

(Jaggi et al., 2005) which lowers the rhizosphere pH and 

solubilize CaCO3 (Cifuentes and Linderman, 1993; Brahim 

et al., 2017; Andrade et al., 2018) and enhance the nutrient 

bioavailability especially of P (Deluca et al., 1989). 

However, low organic matter content in the soil restricts the 

activity of these microbes as it is required as a food source. 

Therefore, addition of organic matter can accelerate 

biological oxidation of elemental sulfur (Chun et al., 2007), 

reason being, an increase in heterotrophic microbial 

population that can oxidize S° substantially. 

Nowadays, combined use of organic matter as a food 

source with S° for heterotrophic SOB is preferred (Sattar et 

al., 2017). Previously, large quantities of organic matter 

with S° have to be used to attain the required benefits, 

therefore, making this practice uneconomical for small-scale 

farmers. Keeping in view the above-mentioned constraints, 

the study was conducted to formulate an acidified extract 

from cow manure and S°, bio-augmented with SOB. This 

product was evaluated to enhance the growth, yield and P 

use efficiency using various P fertilizers in maize. 

 

Materials and Methods 
 

This pot study was conducted in the wire house of the 

Institute of Soil and Environmental Sciences (ISES), 

University of Agriculture, Faisalabad-Pakistan. Soil was 

collected from field and was air dried, grounded and then 

passed through 2 mm sieve. Same soil was analyzed for 

physico-chemical characteristics prior to sowing i.e., 

organic matter 0.77%, EC 1.89 dS m
-1

, pH 7.89, total 

nitrogen 0.085%, available phosphorus 4.5 mg kg
-1

, 

extractable potassium 82 mg kg
-1

 and plant available 

micronutrients Fe 4.5 mg kg
-1

, Zn 0.51 mg kg
-1

 and Mn 0.43 

mg kg
-1

. 

 

Acidified Extract Formulation 

 

Different ecologies were targeted for the isolation of SOB 

strains. Parameters like pH lowering in minimum time and 

sulfate ion production in broth were tested to screen the 

most efficient strains. An acidified product (elemental sulfur 

and SOB amended low pH cow dung) with minimum pH 

was formulated by bio-augmenting selected SOB to Sº 

added cow dung. The prepared product was optimized for 

temperature, moisture, nutritional source and then low pH 

amendment was finally obtained after 21 days in the 

presence of most competent SOB isolate ARS-4. The strain 

ARS-4 was identified from Macrogen (Seoul, Korea) as 

Lysinibacillus spp. through 16S rRNA gene (1351 bp) 

sequencing which was then deposited in the GenBank 

database under the accession number MH924824.1. 

Keeping in view the economical aspect, the formulated solid 

product was then diluted with water in different ratios (5, 10 

and 15%) for soil application (lab incubation study, data not 

shown in this study) to determine temporal P release pattern. 

Based on attaining minimum pH and maximum P release in 

soil, the most economical dilution ratio (10%) was applied 

to pot grown maize. 

 

Experimental Design 

 

Seeds of maize hybrid Hycorn were obtained from ICI, Pvt. 

Ltd., Pakistan. Five seeds were sown in each pot under three 

sources of P viz., DAP, SSP and RP applied at 100 and 50% 

of recommended rate with and without 10% AE while AE 

alone was used for comparison. Moreover, 82.5 mg P kg
-1

 

were used as 100% recommended rate and 10% AE was 

applied at the rate of 247 L ha
-1

. The experiment was laid 

out following completely randomized design (CRD) with 

three replications. Recommended dose of NK (87.5 and 

62.5 mg kg
-1 

of soil) was applied by using urea and sulfate 

of potash (SOP), respectively. The Sº and SOB amended 

low pH product was fertigated with tap water at four critical 

stages of maize as leaf blade formation, stalk formation, 

cob/husk/tassel formation and grain formation. 

 

Data Collection 

 

Harvesting of maize was done at physiological maturity. 

Plant height was measured by using meter rod. Plants were 

initially sun dried and then in the oven at 70ºC till constant 

weight. Dry shoot biomass and 100-grains weight were 

determined by using digital electric balance. The cobs were 

separated from plants and length was measured. For grains 

per cob determination, the grains were separated from the 

piths manually and counted. 

 

Gaseous Exchange Measurements 

 

Gaseous-exchange measurements i.e., photosynthetic rate 

(A) and transpiration rate (E) were analyzed using CIRAS-3 

(PP System, Amesbury, M.A., U.S.A.). Gas exchange was 

measured from the top third, fully matured leaf of each 

plants (Fifty days after sowing,). The water use efficiency of 

plants was calculated as follows: 
 
 ater use efficienc          h t s nthetic rate A   rans irati n rate    

 

https://www.sciencedirect.com/science/article/pii/S1512188717300428#!
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Phosphorus Analysis in Roots and Shoots of Plants 

 

The plant materials were digested to estimate P following 

the process of Wolf (1982) and P was calculated by Olsen 

method (Olsen and Sommers, 1982). 

Phosphorus uptake in shoot was calculated as follow:  
 

  u ta e in sh  ts   g   t    c ncentrati n in sh  ts     Dr   atter  g   t      

 

Statistical Analysis 
 

All collected data were subjected to analysis of variance 

(ANOVA) (Steel et al., 1997) by using Statistix 8.1 

software (computer software) and means were compared 

by Tukey HSD test. 
 

Results 
 

Plant Growth Parameters 
 

Combined application of acidified extract and 

recommended dose of P fertilizers significantly enhanced 

dry biomass and height of maize as compared to their 

respective controls (Fig. 1a and b). Maximum increase in 

dry biomass 112.13% was recorded through combined 

application of AE and RP as compared to separate treatment 

of RP. Acidified extract along with DAP and SSP showed 

57.45 and 53.22% increase in dry biomass than their 

individual application, respectively. 

In case of plant height, maximum value of 200.7 cm 

was recorded through combined application of AE and 

recommended dose of P as DAP followed by treatment 

where half dose of P as DAP and AE were applied. 

Maximum 100-grains weight of maize was observed in 

treatments where 100% P was applied as DAP with AE, 

which differed non-significantly from 100% P as SSP with 

AE, followed by treatment where 100% P was applied as 

SSP and RP without AE (Fig. 2). 
 

Gas Exchange Traits 
 

Considerably good results of spade value were recorded 

from treatments where P fertilizers were applied with AE. 

The separate application of RP showed minimum result 

however, combined application of RP and AE showed 

22.46% increase in spade value over respective control. 

The 100% P as DAP and SSP showed 12.96% and 11.72% 

increase when combined with AE compared to their 

respective controls (Fig. 3a). 

Different treatments of P and AE showed variable 

response to photosynthetic activity of maize plants (Fig. 3b). 

Recommended dose of P as DAP along with AE showed 

maximum photosynthetic activity followed by 100% P as 

SSP and RP with AE application. The 50% P as DAP, SSP 

and RP combined with AE showed significant response than 

their individual application. Acidified extract application 

along with 100% DAP showed maximum response in 

transpiration rate (2.59 mmol H2O m
-2

 s
-1

) that differed non-

significantly from AE + 100% P as SSP (Fig. 3c). Combined 

application of AE and 100% P as RP showed transpiration 

rate i.e., 2.56 mmol H2O m
-2

 s
-1

. Data regarding water use 

efficiency showed that application of AE with recommended 

dose of P fertilizers significantly boosted the WUE (Fig. 3d). 

Maximum WUE was recorded where DAP, SSP and RP 

were applied in combination with AE followed by the 

treatments, where half of the recommended dose of P 

fertilizers with AE were applied (Fig. 3d). 

 

P Contents in Plant Shoots and Roots 
 

The combined application of AE and P fertilizers 

significantly improved P contents in maize as compared to 

sole application of P fertilizers. Maximum P content 42.3% 

increase in shoot was observed where AE was applied with 

recommended dose of P as SSP, followed by AE + 100%P 

 
 

Fig. 1: Dry weight (a) and plant height (b) of maize plant after 

applying acidified extract and different sources of P 
Here T1: 100% P as DAP; T2: 100% P as RP; T3: 100% P as SSP; T4: 10% AE; T5: 

100% P as RP+10% AE; T6: 100% P as SSP+10% AE; T7: 100% P as DAP+10% 

AE; T8: 50% P as RP+10% AE; T9: 50% P as SSP+10% AE; T10: 50% P as 

DAP+10% AE 

 

 
 

Fig. 2: 100-grains weight of maize plant after applying acidified 

extract and different sources of P 
Here T1: 100% P as DAP; T2: 100% P as RP; T3: 100% P as SSP; T4: 10% AE; T5: 

100% P as RP+10% AE; T6: 100% P as SSP+10% AE; T7: 100% P as DAP+10% 

AE; T8: 50% P as RP+10% AE; T9: 50% P as SSP+10% AE; T10: 50% P as 

DAP+10% AE 
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as DAP (39.28%), compared to alone use of SSP and DAP 

(Fig. 4a). Alone application of acidified extract showed 

minimum response in P uptake, however, when it was 

applied with half and full dose of P-fertilizers showed 

prominent outcomes. In case of P contents in root, 

treatments where P fertilizers were applied alone showed 

good results, however, these results increased significantly 

when AE was applied with P fertilizers. Recommended 

dose of P as DAP, SSP and RP showed P content as 0.28, 

0.25 and 0.22%, respectively whereas when AE was applied 

with these P fertilizers, P values were observed as 0.33, 0.31 

and 0.28% (Fig. 4b). 

Yield Parameters 
 

Data regarding cob growth related parameters of maize 

revealed that acidified extract along with P sources showed 

statistically significant effect as compared with alone P 

fertilizers (Fig. 5a). Sole application of DAP and SSP 

showed 9.53 cm and 9.33 cm cob length, respectively. 

Application of AE along with DAP and SSP showed 57.39 

and 75.02% increase in cob length as compared with DAP 

and SSP alone, respectively. Almost similar findings were 

recorded for number of grains per cob where combined 

application of AE with DAP, SSP and RP showed 74.56, 

 
 

Fig. 3: Spade value (a), photosynthetic rate (b), transpiration rate (c), water use efficiency (d) of maize plant after application of acidic 

extract and different sources of P 
Here T1: 100% P as DAP; T2: 100% P as RP; T3: 100% P as SSP; T4: 10% AE; T5: 100% P as RP+10% AE; T6: 100% P as SSP+10% AE; T7: 100% P as DAP+10% AE; T8: 

50% P as RP+10% AE; T9: 50% P as SSP+10% AE; T10: 50% P as DAP+10% AE 

 

 
 

Fig. 4: P contents in maize shoot (a) and root (b) after application of acidified extract and different sources of P 
Here T1: 100% P as DAP; T2: 100% P as RP; T3: 100% P as SSP; T4: 10% AE; T5: 100% P as RP+10% AE; T6: 100% P as SSP+10% AE; T7: 100% P as DAP+10% AE; T8: 

50% P as RP+10% AE; T9: 50% P as SSP+10% AE; T10: 50% P as DAP+10% AE 
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86.5 and 147% increment over sole DAP, SSP and RP 

application, respectively (Fig. 5b). 

 

P Uptake in Shoots (mg/pot) 

 

Statistically significant increase in P uptake by maize shoot 

was recorded from integrated application of P-fertilizers 

with AE. Maximum P uptake was observed by combined 

application of AE and recommended dose of P as DAP, 

followed by treatments where AE + 100% of P as SSP and 

RP were applied. These treatments improved P uptake by 

92.42, 106.6 and 199.79% over their respective control 

treatments. Treatments where half dose of P fertilizers with 

AE were applied showed better results than alone 

application of fertilizers (Fig. 6). 

 

Discussion 

 

Plant vegetative growth reflected the behavior of plants 

against optimally applied inputs (Tariq et al., 2014). Plant 

growth and yield attributes were significantly improved 

where combined AE and P fertilizers were applied than their 

separate application. It might be attributed to the fact that 

AE instantly lowers the soil pH by providing it a pH shock 

(data not shown in this study) that mobilizes P. The same 

fact was reported by Pedersen et al. (2017), the AE induces 

lowering of pH that ultimately desorbs the locked nutrients 

especially P to be taken up by plants. Further, the 

acidification effect can enhance growth promoting effects of 

the slurry (Amin et al., 1989; Lynch et al., 1991) suppress 

ammonia volatilization (Fangueiro et al., 2015) while 

increasing the dissolved nutrients pool (Christensen et al., 

2009) which regulate the growth of plants. Phosphorus is 

involved in leaf expansion, leave growth and root growth 

whereas, deficiency of P causes reduction of average length 

of the cell division zone in maize leaves, as well as its 

deficiency can cause reduction of both cell production and 

cell division rates (Assuero et al., 2004). Leaf expansion of 

plants is strongly related to the expansion of epidermal cells 

and this might be reduced in P-deficient plants because of 

shrinkage in root network. P deficiency causes lowering of 

cytosol Pi concentrations which negatively affect the Calvin 

cycle (Heldt et al., 1977). As a result, level of triose 

phosphate would reduce and starch would accumulate in 

leaf while the export of carbohydrates to roots should 

decrease (Rao and Terry, 1989; Williamson et al., 2001; 

Wissuwa et al., 2005). This reduction in root growth 

ultimately effects the plant growth and development. 

Optimum amount of P enhances the plant height (Maqsood 

et al., 2001; Ayub et al., 2002), leaves per plant (Krey et al., 

2013). Pedersen et al. (2017) reported that application of 

manure slurry acidified with sulfuric acid enhanced P 

bioavailability and vegetative growth of maize in sandy soil. 

Gas exchange traits of maize (transpiration rate, 

photosynthetic rate, water use efficiency and spade value) 

were significantly improved after combined application of 

acidified extract with recommended sources of P fertilizer. 

Increased supply of P to plant, promotes root growth that 

substantially results in higher rate of water loss from aerial 

parts of plant. Increased P facilitates the initiation and 

growth of roots and increase in root length promotes the 

uptake of moisture and crucial elements from soil (Singh 

and Sale, 2000; Zafar et al., 2011). The response may be 

attributed to role of P in regulation of metabolic pathways in 

the cytosol and chloroplasts (Woodrow and Rowan, 1979). 

In vacuolated cells of plants, the vacuole acts as storage 

pool, and about 85–95% of the total P of the cell is present 

in the vacuoles as Pi (Lauer et al., 1989). Deficiency of P 

reduces the carbohydrate translocation to roots which affect 

 
 

Fig. 5: Cob length (a) and number of grains per cob (b) after 

application of acidified extract and different sources of P 
Here T1: 100% P as DAP; T2: 100% P as RP; T3: 100% P as SSP; T4: 10% AE; T5: 

100% P as RP+10% AE; T6: 100% P as SSP+10% AE; T7: 100% P as DAP+10% AE; 

T8: 50% P as RP+10% AE; T9: 50% P as SSP+10% AE; T10: 50% P as DAP+10% AE 

 

 
 

Fig. 6: P uptake of maize shoot after application of acidic extract 

and different sources of P 
Here T1: 100% P as DAP; T2: 100% P as RP; T3: 100% P as SSP; T4: 10% AE; T5: 

100% P as RP+10% AE; T6: 100% P as SSP+10% AE; T7: 100% P as DAP+10% AE; 

T8: 50% P as RP+10% AE; T9: 50% P as SSP+10% AE; T10: 50% P as DAP+10% AE 
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the root architecture and growth which minimize the P 

uptake in plants (Wissuwa et al., 2005). Due to lower 

uptake of P, Pi concentration in the stromata of chloroplasts 

is reduced which strongly affects the photosynthesis and 

carbon partitioning in the light-dark cycle. The optimum 

range required for maximum photosynthesis is 2.0–2.5 mM, 

whereas the concentration below 1.4–1.0 mM strongly 

inhibits photosynthesis (Heber et al., 1989; Jiang et al., 

2007). 

The present study revealed that yield related 

parameters were significantly improved by the combined 

application of AE and P fertilizers. The resultant peak 

response under the effect of AE is attributed to the instant 

localized acidity of rhizosphere by oxidation of Sº through 

SOB as well as P-mineral solubilization due to H2SO4 and 

organic acids production from microbes that improved 

dissolution of P and then its uptake by plants and 

accumulation in grains. Extract with P fertilizers showed 

maximum 100 grain weight (Fig. 2) by virtue of the 

combined application of P fertilizers and acidified 

extract that improved P availability at critical plant 

growth stages. Zhao et al. (2010) elaborated that nutrient 

solubility from mineral surfaces, minerals speciation, 

eventual bioavailability and movement of the essential 

nutrients within soil is driven and regulated by the most 

vital factor i.e., pH. Applied P and its enhanced 

bioavailability significantly improved the plant growth, 

confirming the verdict of Hussain et al. (2006) and 

Balochgharayi (2011) that applying P fertilizers is 

beneficial and wholesome in enhancing all physiological 

and yield parameters of maize crop as well as cob related 

parameters. Amanullah et al. (2010) advocated the same 

fact that yield and yield components of maize increased 

significantly with increase in P contents. They further stated 

that application P fertilizers to maize crop increased 

gr wer’s inc  e b  enhancing yield and decrease in P 

concentration can severely reduce the maize yield. 

Moreover, optimum concentration of P is most important 

for maximum yield and yield related parameters (Duggul, 

1990) e.g., grain weight/cob, cobs/plant and grain rows/cob 

(Amin et al., 1989) grains/cob (Maqsood et al., 2001) and 

1000-grains weight (Toor, 1990). 

Maximum P contents in shoot and root were recorded 

where P fertilizers and AE were applied in combination. AE 

helps to solubilize the minerals due to H2SO4 and lowering 

of soil pH simultaneously. Also, the organic acids produced 

from microbes aids up in dissolving P in soil to be up taken 

by plants. Siami et al. (2008) and Chaghazardi et al. (2014) 

confirmed these findings that application of acidified 

materials in soil enhanced the nutrient contents in plants. 

Oxidation of Sº results in decreasing soil pH to solubilize 

the locked nutrients and improve the characteristics of 

calcareous soil (Ullah et al., 2014; Havlin et al., 2016). Our 

findings were in line with the observations made by Iqbal et 

al. (2012) that Sº oxidation cause H
+
 production that induces 

the replacement of metal cations from mineral surfaces such 

as iron hydroxide resulting in co-dissolution of other locked 

and needful nutrients from minerals that are needed by 

plants as well. Moreover, negative sites for metal 

complexation are provided due to sulfate production from Sº 

oxidation process which are easily accessible to plants roots. 

Other than this, researchers have also manipulated pH by 

applying of mineral acids as HNO3 (Schwertmann et al., 

1987), acetic acid (Tessier et al., 1979) and organic acids 

(citric, gallic and oxalic acids) (Renella et al., 2004; Khalid 

and Fawy, 2011) to find that addition of acids induce 

solubilization of carbonates to mobilize the mineral 

nutrients and add up in buffering the soils (Schwertmann et 

al., 1987; Besharati, 2017). Kunze (1965) reported that 

acids help to dissolve the calcium minerals in soil and this 

solubility further depends upon several factors such as 

percentage and type of carbonate present and its particle 

size. The buffer capacity of soil is decreased under the effect 

of acids, thereby improving the nutrients bioavailability and 

uptake by plants and improving characteristics of calcareous 

soils as well (Kayser et al., 2000; Malakouti and Homaei, 

2005; Kalich and Golchin, 2008). But, the major 

disadvantage of adding mineral acids directly to soil is the 

health hazard, their application can pose. Also, there is a 

depressive effect on soil respiration that suppresses overall 

biological activity in the soil as well as microbial biomass 

(Popovic, 1984). 

However, with the advent of a new strategy, also come 

few limitations. For this approach, the addition of the extract 

in soil is a time specific requirement. It should be added at 

peak nutrient requirement of the crop because pH of soil 

cannot be changed permanently. So, its addition at crucial 

stages of crop life cycle when there is maximum nutrient 

requirement would be critical. For attaining maximum 

benefit from this approach, it would be beneficial to apply 

the extract frequently with irrigation. Therefore, the 

application method of this product needs further R&D to 

make it easier for farmers. 

 

Conclusion 

 

Application of P fertilizers with acidified extract 

significantly improved plant growth, gas exchange traits and 

P uptake in plants than their sole application. The approach 

is promising in improving P use efficiency and maize 

productivity, however, multi-sites field trials need to be 

performed to warrant successful performance in the field. 
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